Package: cornet 1.0.0
cornet: Penalised Regression for Dichotomised Outcomes
Implements lasso and ridge regression for dichotomised outcomes (<doi:10.1080/02664763.2023.2233057>), i.e., numerical outcomes that were transformed to binary outcomes. Such artificial binary outcomes indicate whether an underlying measurement is greater than a threshold.
Authors:
cornet_1.0.0.tar.gz
cornet_1.0.0.zip(r-4.5)cornet_1.0.0.zip(r-4.4)cornet_1.0.0.zip(r-4.3)
cornet_1.0.0.tgz(r-4.4-any)cornet_1.0.0.tgz(r-4.3-any)
cornet_1.0.0.tar.gz(r-4.5-noble)cornet_1.0.0.tar.gz(r-4.4-noble)
cornet_1.0.0.tgz(r-4.4-emscripten)cornet_1.0.0.tgz(r-4.3-emscripten)
cornet.pdf |cornet.html✨
cornet/json (API)
NEWS
# Install 'cornet' in R: |
install.packages('cornet', repos = c('https://rauschenberger.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/rauschenberger/cornet/issues
Last updated 2 months agofrom:cd95458f51. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 26 2024 |
R-4.5-win | OK | Oct 26 2024 |
R-4.5-linux | OK | Oct 26 2024 |
R-4.4-win | OK | Oct 26 2024 |
R-4.4-mac | OK | Oct 26 2024 |
R-4.3-win | OK | Oct 26 2024 |
R-4.3-mac | OK | Oct 26 2024 |
Dependencies:codetoolsforeachglmnetiteratorslatticeMatrixpalassoRcppRcppEigenshapesurvival
reproducibility - application
Rendered fromapplication.Rmd
usingknitr::rmarkdown
on Oct 26 2024.Last update: 2023-06-02
Started: 2019-09-13
Article
Rendered fromarticle.Rmd
usingknitr::rmarkdown
on Oct 26 2024.Last update: 2024-09-26
Started: 2019-03-18
reproducibility - simulation
Rendered fromsimulation.Rmd
usingknitr::rmarkdown
on Oct 26 2024.Last update: 2023-06-01
Started: 2019-09-13
Combined Regression
Rendered fromvignette.Rmd
usingknitr::rmarkdown
on Oct 26 2024.Last update: 2024-09-26
Started: 2018-06-14
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Arguments | .check |
Equality | .equal |
Data simulation | .simulate |
Single-split test | .test |
Extract estimated coefficients | coef.cornet |
Combined regression | cornet-package cornet |
Performance measurement | cv.cornet |
Plot loss matrix | plot.cornet |
Predict binary outcome | predict.cornet |
Combined regression | print.cornet |