Title: | Sparse Regression with Paired Covariates |
---|---|
Description: | Implements sparse regression with paired covariates (<doi:10.1007/s11634-019-00375-6>). The paired lasso is designed for settings where each covariate in one set forms a pair with a covariate in the other set (one-to-one correspondence). For the optional correlation shrinkage, install 'ashr' (<https://github.com/stephens999/ashr>) and 'CorShrink' (<https://github.com/kkdey/CorShrink>) from GitHub (see README). |
Authors: | Armin Rauschenberger [aut, cre] |
Maintainer: | Armin Rauschenberger <[email protected]> |
License: | GPL-3 |
Version: | 1.0.0 |
Built: | 2024-10-27 06:05:43 UTC |
Source: | https://github.com/rauschenberger/palasso |
This page lists the main methods for class "palasso".
## S3 method for class 'palasso' predict(object, newdata, model = "paired", s = "lambda.min", max = NULL, ...) ## S3 method for class 'palasso' coef(object, model = "paired", s = "lambda.min", max = NULL, ...) ## S3 method for class 'palasso' weights(object, model = "paired", max = NULL, ...) ## S3 method for class 'palasso' fitted(object, model = "paired", s = "lambda.min", max = NULL, ...) ## S3 method for class 'palasso' residuals(object, model = "paired", s = "lambda.min", max = NULL, ...) ## S3 method for class 'palasso' deviance(object, model = "paired", max = NULL, ...) ## S3 method for class 'palasso' logLik(object, model = "paired", max = NULL, ...) ## S3 method for class 'palasso' summary(object, model = "paired", ...)
## S3 method for class 'palasso' predict(object, newdata, model = "paired", s = "lambda.min", max = NULL, ...) ## S3 method for class 'palasso' coef(object, model = "paired", s = "lambda.min", max = NULL, ...) ## S3 method for class 'palasso' weights(object, model = "paired", max = NULL, ...) ## S3 method for class 'palasso' fitted(object, model = "paired", s = "lambda.min", max = NULL, ...) ## S3 method for class 'palasso' residuals(object, model = "paired", s = "lambda.min", max = NULL, ...) ## S3 method for class 'palasso' deviance(object, model = "paired", max = NULL, ...) ## S3 method for class 'palasso' logLik(object, model = "paired", max = NULL, ...) ## S3 method for class 'palasso' summary(object, model = "paired", ...)
object |
palasso object |
newdata |
covariates:
list of matrices, each with |
model |
character |
s |
penalty parameter:
character |
max |
maximum number of non-zero coefficients,
positive integer,
or |
... |
further arguments for
|
By default, the function predict
returns
the linear predictor (type="link"
).
Consider predicting the response (type="response"
).
Use palasso to fit the paired lasso.
The function palasso
fits the paired lasso.
Use this function if you have paired covariates
and want a sparse model.
palasso(y = y, X = X, max = 10, ...)
palasso(y = y, X = X, max = 10, ...)
y |
response:
vector of length |
X |
covariates:
list of matrices,
each with |
max |
maximum number of non-zero coefficients:
positive numeric, or |
... |
Let x
denote one entry of the list X
. See glmnet
for alternative specifications of y
and x
. Among the further
arguments, family
must equal "gaussian"
, "binomial"
,
"poisson"
, or "cox"
, and penalty.factor
must not be
used.
Hidden arguments:
Deactivate adaptive lasso by setting adaptive
to FALSE
,
activate standard lasso by setting standard
to TRUE
,
and activate shrinkage by setting shrink
to TRUE
.
This function returns an object of class palasso
.
Available methods include
predict
,
coef
,
weights
,
fitted
,
residuals
,
deviance
,
logLik
,
and summary
.
Armin Rauschenberger, Iiuliana Ciocanea-Teodorescu, Marianne A. Jonker, Renee X. Menezes, and Mark A. van de Wiel (2020). "Sparse classification with paired covariates." Advances in Data Analysis and Classification 14:571-588. doi:10.1007/s11634-019-00375-6. (Click here to access PDF. Contact: [email protected].)
set.seed(1) n <- 50; p <- 20 y <- rbinom(n=n,size=1,prob=0.5) X <- lapply(1:2,function(x) matrix(rnorm(n*p),nrow=n,ncol=p)) object <- palasso(y=y,X=X,family="binomial") # adaptive=TRUE,standard=FALSE names(object)
set.seed(1) n <- 50; p <- 20 y <- rbinom(n=n,size=1,prob=0.5) X <- lapply(1:2,function(x) matrix(rnorm(n*p),nrow=n,ncol=p)) object <- palasso(y=y,X=X,family="binomial") # adaptive=TRUE,standard=FALSE names(object)